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Abstract
We demonstrate the control of solitary wave dynamics of the modified
Korteweg-de Vries (MKdV) equation through the temporal variations of the
distributed coefficients. This is explicated through exact cnoidal wave and
localized soliton solutions of the MKdV equation with variable coefficients.
The solitons can be accelerated and their propagation can be manipulated by
suitable variations of the above parameters. In sharp contrast with the nonlinear
Schrödinger equation, the soliton amplitude and widths are time independent.

PACS numbers: 03.75.Lm, 05.45.Yv, 03.75.−b

(Some figures in this article are in colour only in the electronic version)

The modified Korteweg-de Vries (MKdV) equation manifests in diverse areas of physics
[1–6]. For example, it appears in the context of electromagnetic waves in size-quantized films,
van Alfvén waves in collisionless plasma [7], phonons in anharmonic lattice [8], interfacial
waves in two-layer liquid with gradually varying depth [9], transmission lines in Schottky
barrier [10], ion acoustic solitons [11–13], elastic media [14] and traffic flow problems
[15, 16]. It is an integrable dynamical system with an infinite number of conserved quantities;
the solutions of this equation are well studied [17, 18]. Recently, the generation of solitons
and modulational instability in this dynamical system has been carefully analysed [19].

Recently, nonlinear equations with variable coefficients have attracted considerable
attention in the literature. The nonlinear Schrödinger equation (NLSE) with variable
nonlinearity and dispersion is relevant to both optical fibres and Bose–Einstein condensates
[20–23]. The nonlinear Schrödinger equation with source, having distributed coefficients such
as variable dispersion, variable Kerr nonlinearity and gain or loss, is applicable to asymmetric
twin-core optical fibres [24, 25]. It has been shown that solitons can be compressed and their
dynamics effectively controlled through these variable parameters. The Korteweg-de Vries
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(KdV) equation with variable coefficients [26] has been studied recently in the context of
ocean waves, where the spatio-temporal variability of the coefficients is due to the changes
in the water depth and other physical conditions. Recently, the extended KdV equation with
variable nonlinearity has also been analysed for the effect of the varying coefficient on soliton
dynamics [27]. The fact that the MKdV equation is relevant to hydrodynamics and a variety
of physical phenomena, it is natural to expect the possibility of temporal variations in the
equation parameters occurring in the same. Furthermore, for propagating solitons, the first
integral of the MKdV equation yields NLSE with a source, making it imperative to investigate
the effect of the temporal variation of the distributed parameters on the solitary wave solutions
of this dynamical system.

The goal of the present letter is to study the effect of the variable coefficients on the
solution space of the MKdV equation, both for positive and negative cases. We find that
the effect of distributed coefficients on the soliton dynamics of the MKdV equation is quite
different than that of the NLSE. In the case of the NLSE, the amplitude and width are affected
by the time dependence of the distributed coefficients. This leads to compression of solitary
waves in the NLSE. In the case of the MKdV equation, it is shown that solitary waves can
be effectively controlled through the equation parameters. The solitons can be accelerated
and manipulated by suitable variations of the above parameters. However, the width and
amplitudes are not amenable for manipulation and control, unlike the NLSE system.

We consider the modified KdV equation with variable coefficients in the form

ut + α(t)ux − β(t)u2ux + γ (t)uxxx = 0, (1)

where γ (t), α(t) and β(t) are time-dependent variables. Although the first derivative term in
the field variable can be removed by a suitable change of the coordinate frame, the same has
been kept here explicitly to contrast its effect with the nonlinear and dispersion terms. We
consider the ansatz solution of the form

u = A1(t)g[ω(x, t)] + A0(t), (2)

where ω(x, t) = f (t)x − h(t). The variable coefficient MKdV equation can be mapped to
Jacobi elliptic equation:

g′′ = Pg + 2Qg3, (3)

having a conserved quantity

(g′)2 = Pg2 + Qg4. (4)

Here, prime indicates differentiation with respect to the argument ω, and P and Q are constants.
Substituting the ansatz into equation (1) and using relations (3) and (4), we collect the
coefficients of gα and gαg′ (where α = 0, 1, 2) to find the consistency conditions

g0 : ∂tA0 = 0, (5)

g : ∂tA1 = 0, (6)

g′ : A1∂tω + A1α(t)∂xω + A1Pγ (t)[∂xω]3 − A2
0A1β(t)∂xω = 0, (7)

gg′ : −2A0A
2
1β(t)∂xω = 0, (8)

g2g′ : −A3
1β(t)∂xω + 6A1Qγ (t)[∂xω]3 = 0. (9)

For obtaining non-trivial solutions to the above set of equations, we require that A1, β(t) and
∂xω are non-vanishing. Equation (8) then implies A0 = 0; equation (6) yields A1 = constant.
From equation (9), further simplification yields

f 2(t) = A2
1β(t)

6Qγ (t)
, (10)
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and from equation (7) we get

∂th(t) = x∂tf (t) + α(t)f (t) + Pγ (t)f 3(t). (11)

Condition (11) requires that f (t) should be a constant so that the term containing x vanishes.
This implies β(t)/γ (t) = κ , where κ is a constant. We then have the relations

f =
√

A2
1κ

6Q
, (12)

and

h(t) =
√

A2
1κ

6Q

∫ [
α(t) +

γ (t)PA2
1κ

6Q

]
dt. (13)

Hence, the exact travelling wave solution can be written in the form

u = A1g




√
A2

1κ

6Q

[
x −

∫ [
α(t) +

γ (t)PA2
1κ

6Q

]
dt

]
 . (14)

It is worth noting that A1 is unconstrained and controls the width of the solution. Unlike the case
of the NLSE, the amplitude and width are independent of time. Since the solution involves κ ,
positive and negative MKdV equations have different types of solutions. g can be any of the
12 Jacobi elliptic functions with the modulus parameter m2 (0 � m2 � 1) [28, 29]. The
following are some identities of the Jacobi elliptic functions which are used:

cn2(w,m) + sn2(w,m) = 1,

dn2(w,m) + m2sn2(w,m) = 1,

sn′(w,m) = cn(w,m) · dn(w,m),

cn′(w,m) = −sn(w,m) · dn(w,m),

dn′(w,m) = −m2sn(w,m) · cn(w,m).

For m = 1,

cn(w, 1) = dn(w, 1) = sech(w) and sn(w, 1) = tanh(w).

Below we analyse some explicit solutions and corresponding parameter ranges. For the sake
of specificity, we consider β(t) > 0.

Case I

With g = cn(ω(x, t)), one finds the cnoidal wave solution as

u = A1cn




√
A2

1κ

−6m2

[
x −

∫ [
α(t) +

γ (t)(2m2 − 1)A2
1κ

−6m2

]
dt

]
 , (15)

where γ (t) < 0, P = (2m2 − 1) > 0,Q = −m2 < 0 and m2 > 1/2. In the case when
m2 = 1/2, P = 0 and γ (t) does not affect the solution. For the case m2 = 1, we have the
exact solitary wave solution of the form

u = A1sech




√
−A2

1κ

6

[
x −

∫ [
α(t) − γ (t)A2

1κ

6

]
dt

]
 . (16)

Figure 1 depicts the temporal evolution of the above bell-shaped localized solution.
For illustrative purpose, we have considered two different cases, where α(t) = 0 and
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Figure 1. Propagating localized solitary wave solution of MKdV equation with g = cn(x, t),
where γ = cos(t), κ = −24, A1 = 1, P = 1,Q = −1 and m = 1; left: α(t) = 0 and right:
α(t) = −3t3 cos(t3).

Figure 2. Propagating localized solitary wave solutions for g = cn(x, t), where γ (t) = 3t2,

κ = −24, A1 = 1, P = 1, Q = −1 and m = 1; left: α(t) = 0 and right: α(t) = −t9.

α(t) = −3t3cos(t3). Figure 2 depicts the same solution when γ (t) and α(t) have polynomial
time dependence. One clearly sees that the temporal variations of γ and α can effectively
modulate and control the propagation of the solitons.

Case II (g = sn(w,m))

We now study the cases where g = sn(ω(x, t)), for which the solution corresponds to the
negative MKdV equation:

u = A1sn




√
A2

1κ

6m2

[
x −

∫ [
α(t) − γ (t)(m2 + 1)A2

1κ

6m2

]
dt

]
 . (17)

Here, γ (t) > 0,Q = m2 > 0 and P = −(m2 + 1) < 0.
For m2 = 1, we have the kink-type solitary wave solution

u = A1tanh




√
A2

1κ

6

[
x −

∫ [
α(t) − γ (t)A2

1κ

3

]
dt

]
 . (18)

Figure 3 depicts the kink solution in the presence of time-dependent dispersion. The
soliton motion can be controlled through the external parameters.
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Figure 3. Kink-type solitary wave solution of the MKdV equation, where γ (t) = cos(t),
α(t) = 5t4, κ = −48, A1 = 1, P = −2,Q = 1 and m = 1.

Case III (g = dn(w,m))

We get exact solitary wave solution of the negative MKdV equation, in the case when
g = dn(w(x, t)):

u = A1dn




√
−A2

1κ

6

[
x −

∫ [
α(t) − γ (t)(2 − m2)A2

1κ

6

]
dt

]
 . (19)

Here, γ (t) < 0 and P = (2 − m2) > 0 and Q = −1. For m2 = 1, we get bell-shaped
solitary wave solution as

u = A1dn




√
−A2

1κ

6

[
x −

∫ [
α(t) − γ (t)A2

1κ

6

]
dt

]
 . (20)

In conclusion, the MKdV equation with time varying coefficients has solitary waves
solutions, provided the temporal variations of the coefficients are of the form given in the text.
The temporal variation of these parameters allows effective control of the solitary wave profile.
These continuous waves and localized solutions can be made to accelerate. The amplitude and
widths are not modulated by the distributed coefficients. The induction of time-dependent ux

term allows us to control the motion of the solitons more efficiently.
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